7.4 Generation of Random Bits 287

7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally £
probable. Of course you can just generate uniform random deviates between zer
and one and use their high-order bit (i.e., test if they are greater than or less tha
0.5). However this takes a lot of arithmetic; there are special-purpose applications
such as real-time signal processing, where you want to generate bits very muc
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (althoudf?.7 and§20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficient
are zero or one. An example is

dny

NDWW\//

)

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

vilele}

o 2% 2?42t 420 (7.4.3
which we can abbreviate by just writing the nonzero powers,a.g.,
(18,5,2,1,0)

Every primitive polynomial modulo 2 of order(=18 above) defines a recurrence
relation for obtaining a new random bit from thepreceding ones. The recurrence
relation is guaranteed to produce a sequence of maximal length, i.e., cycle throug
all possible sequences afbits (except all zeros) before it repeats. Therefore one
can seed the sequence with any initial bit pattern (except all zeros), agd get
random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throgénerated
n steps ago), and denoted, ao, . .., a,. We want to give a formula for a new bit
ap. After generating:o we will shift all the bits by one, so that the odd, is finally
lost, and the new, becomes:;. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
registern bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

apg = a18 XOR as XOR a9 XOR aq (742

) 610°8BpLqUIRI ®AIBSISN1081IP 0} [RRWS puas Jo ‘(Ajuo eouswy YUoN) sB/-2/8-008-T |[e2+D
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD

(X-790€1-T2S-0 NESI) ONILNINOD DIFILNIIOS 4O 18V IHL 122 NVHLHO4 NI SAdIDIY TvOIHINNN woly ebed sdwes

The terms that are XOR'd together can be thought of as “taps” on the shift register
XOR'd into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit) &
term. So the first term will always be, for a primitive polynomial of degree,
while the last term might or might not he;, depending on whether the primitive
polynomial has a term in'.

It is rather cumbersome to illustrate the methoBGRTRAN. Assume thaiand
is a bitwise AND functionpot is bitwise complementishft (,1) is leftshift by
one bit,ior is bitwise OR. (These are available in m&®RTRAN implementations.)
Then we have the following routine.

JLBWY YLION 8pISINO

288 Chapter 7. Random Numbers

18 17 5 4 3 2 1 0
shift left

@

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive
polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo
2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b)
Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right.
This method is easiest to implement in software.

FUNCTION irbitil(iseed)

INTEGER irbitl,iseed,IB1,IB2,IB5,IB18

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072) Powers of 2.
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

LOGICAL newbit The accumulated XOR's.
newbit=iand(iseed,IB18) .ne.0 Get bit 18.
if (iand(iseed,IB5) .ne.0)newbit=.not.newbit XOR with bit 5.
if (iand(iseed,IB2) .ne.0)newbit=.not.newbit XOR with bit 2.
if (iand(iseed,IB1) .ne.0)newbit=.not.newbit XOR with bit 1.
irbit1=0
iseed=iand(ishft(iseed, 1) ,not(IB1)) Leftshift the seed and put a zero in its bit 1.
if (newbit)then But if the XOR calculation gave a 1,
irbiti=1
iseed=ior(iseed,IB1) then put that in bit 1 instead.
endif
return
END
“Method 11" is less suited to direct hardware implementation (though still

possible), but is more suited to machine-language implementation. It modifies more
than one bit among the saved n bits as each new bit is generated (Figure 7.4.1). It
generates the maximal length sequence, but not in the same order as Method I. The
prescription for the primitive polynomial (7.4.1) is:

ag = a1y
a5 = a5 XOR an

(7.4.3)
ag = ag XOR agn

a; = ap XOR an

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

7.4 Generation of Random Bits 289

Some Primitive Polynomias Modulo 2 (after Watson)
(L 0 (51, 6, 3, 1, 0)

2 1, 0 (52, 3, O

3 1, 0 (53, 6, 2, 1, 0)

(4, 1, 0 (54, 6, 5 4, 3, 2, 0
(5 2 0 (55, 6, 2, 1, 0)

6 1, 0 (56, 7, 4, 2, 0)

(7 1, 0 (57, 5 3, 2, 0

8 4 3 2 0 (58, 6, 5 1, 0

(9 4 0 (59, 6, 5 4, 3, 1, 0
(10, 3, 0) (60, 1, O

(11, 2, 0) (61, 5 2, 1, 0)

(12, 6 4, 1, 0 (62, 6, 5 3, 0

(13, 4, 3, 1, 0 (63, 1, O

(14, 5 3, 1, 0 (64, 4, 3, 1, 0

(15, 1, 0) (65, 4, 3, 1, 0)

(16, 5 3, 2, 0) (66, 8, 6, 5 3, 2 0
(17, 3, 0 (67, 5 2, 1, 0)

(18, 5 2, 1, 0) (68, 7, 5 1, 0

(19, 5 2, 1, 0) (69, 6, 5 2, 0

(20, 3, 0) (70, 5 3,1, 0)

(21, 2, 0) (71, 5 3, 1, 0

(22, 1, 0) (72, 6, 4, 3, 2, 1, 0
(23, 5 0) (73, 4, 3, 2, 0

(24, 4, 3, 1, 0) (74, 7, 4, 3, 0

(25 3, 0 (75, 6, 3, 1, 0)

(26, 6, 2, 1, 0) (76, 5, 4, 2, 0

(7, 5 2, 1, 0 (77, 6, 5 2, 0

(28, 3, 0 (78, 7, 2, 1, 0)

(29, 2, 0) (79, 4, 3, 2, 0)

(30, 6, 4, 1, 0) (80, 7, 5 3 2 1, 0
(3L, 3, 0 (81, 4 0)

(32, 7,5 3 2 1, 0 (8 8 7 6 4 1 0
(33 6 4, 1, 0) (83 7, 4, 2, 0

(34, 7, 6,5 2 1, 0 (8, 8 7, 5 3 1 0
(35 2, 0 (85, 8, 2, 1, 0)

(3, 6, 5 4, 2 1 0 (8, 6 5 2 0

(37, 5 4, 3 2 1, 0 (87, 7, 5 1, 0

(38, 6 5 1, 0 (88, 8, 5 4, 3 1 0
(39, 4, 0 (89, 6, 5 3, 0)

(40, 5, 4 3, 0 (90, 5 3, 2, 0)

(41, 3, 0 (91, 7, 6, 5 3, 2 0
(42, 5 4, 3 2 1, 0 (92 6 5 2 0

(43, 6, 4, 3, 0 (93, 2, O

(44, 6, 5 2, 0 (94, 6, 5 1, 0

(45 4, 3, 1, 0) (95, 6, 5 4, 2 1, 0
(46, 8, 5 3, 2 1, 0 (% 7 6 4 3 2 0
(47, 5 O (97, 6, O

(48, 7, 5 4, 2, 1, 0 (9% 7 4 3 2 1 0
(49, 6, 5 4, 0) (99, 7, 5 4, 0

(50, 4, 3, 2, 0) (100, 8, 7, 2, 0)

In general there will be an exclusive-or for each nonzero term in the primitive
polynomial except 0 and n. The nice feature about Method Il is that al the
exclusive-or’'s can usually be done as a single masked word XOR (here assumed
to be the FORTRAN function ieor):

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

290 Chapter 7. Random Numbers

FUNCTION irbit2(iseed)

INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if (iand(iseed,IB18) .ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)

irbit2=1

else Shift and put O into bit 1.
iseed=iand(ishft(iseed,1) ,not(IB1))
irbit2=0

endif

return

END

A word of cautionis: Don't use sequentia bits from these routines as the bits
of alarge, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by +1 at arapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because 28 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table [2] lists one primitive polynomial
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §89.32-9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201-209.
Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368—369. [2]

7.5 Random Sequences Based on Data
Encryption

InNumerical Recipes’ first edition, wedescribed how to usethe Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It actson 64 bits of input by iteratively applying (16 times, infact) akind of highly

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

